JIEHU蓄电池6GFM24 12V24AH规格参数
JIEHU蓄电池6GFM24 12V24AH规格参数
广州市捷虎蓄电池有限公司是专业铅酸蓄电池制造商,主要产品为固定阀控密封式铅酸蓄电池、风能及太阳能储能电池,是集研究开发、生产、销售为一体的现代化企业。
公司占地面积80亩,总资产投资1.3亿元人民币。公司先后取得了全国工业产品生产许可证、出口产品质量许可证、ISO9001:2008质量管理体系认证、ISO14001:2004环境体认证、UL认证、CE认证、TLC认证、金太阳认证”等证书。JIEHU(捷虎)产品通过了国家蓄电池检测中心、电力工业部、信息产业部、DOT等多家机构的检测 。
公司秉承专注专精、顽强拼搏、务实创新、绿色环保的品牌精神,先后从国外引进了自动化流水生产线,铸焊生产线(COS)、铸板机、自动投铅系统,涂片机、四功能检测机,全自动包装生产线等大批生产和检测设备,有效的保证了产品质量,产品的各项技术指标均达到或超过国家或行业标准。公司主要品牌“JIEHU(捷虎)”广泛用于通信、电信、不间断电源(UPS)、应急照明、汽车船舶、电动车、金融系统、太阳能系统、警报系统等行业。产品畅销国内30多个省市,远销欧盟、美国、日本、东南亚等国,在海内外享有极高盛誉。
公司本着“团结奋进,开拓创新,诚信待人,品质至上”的理念,为海内外的客户提供优质的产品和服务,公司全体员工期待与您的合作。
对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
1、热量的积累
开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的唯一途径。因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
2、硫酸化
阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:
1)氧的循环引起的负极板较低的电位;
2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。
这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成性的硫酸盐形式。因此,当极板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。
3、正极板群的腐蚀和脱落
阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。
4、电池的干涸
在使用期间气体再复合机制的有效率不是,水被电解生成氢气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。
当失水是主要的失效原因时,电解质的比重将会增加,当比重由最初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。
5、负极上部铅的腐蚀
正极板栅和极群的腐蚀性在铅酸电池的各个设计中都是本来就有的。与之形成明显对比的是负极板位于高度还原气氛,在开口式电池中位于极群汇流排通常浸在电解液液面以下,这样就避免了由于正极板群上冒出的氧气而产生的侵蚀。但是阀控电池的许多设计没有保护极板板耳、极群和汇流排,特别是两者之间的焊接接头。因此,它们暴露在从氧循环中逃溢出来、在电池板群上部的连续的氧气气流中。依赖于板栅(板耳)和极群所选铅合金的一致性和生产质量(需要板栅部分完全溶化焊接和汇流排的低孔隙率),迅速氧化可能就会发生。
对于阀控式铅酸电池,通常的性能变坏机制有以下几种情况:
1、热量的积累
开口式铅酸电池在充电时,除了活性物质再生外,还有硫酸电解质中的水逐步电解生成氢气和氧气。当气体从电池盖出气孔通向大气时,每18克水分解产生11.7千卡的热。
而对于阀控式铅酸电池来说,充电时内部产生的氧气流向负极,氧气在负极板处使活性物质海绵状铅氧化,并有效低补充了电解而失去的水。由于氧循环抑制了氢气的析出,而且氧气参与反应又生成水。这样虽然消除了爆炸性的气体混合物的排出问题,但是这种密封式使热扩散减少了一种重要途径,而只能通过电池壳壁的热传导作为放热的唯一途径。因此,阀控铅酸电池的热失控问题成为一个经常遇到的问题。
阀控铅酸电池依赖于电壳壁的热传导来散热,电池安装时良好的通风和较低的室温是很重要的条件。为了进一步降低热失控的危险性,浮充电压通常具体视不同的生产者和不同室温而定。厂家一般都给出电池的浮充电压和温度补偿系数。
2、硫酸化
阀控式比开口式电池更易产生的问题是负极板的硫酸化。这是由于:
1)氧的循环引起的负极板较低的电位;
2)在强酸电解质汇集的电池底部形成的酸的分层,在这种不流动,非循环的电解质系统中是很难避免的。
这两个都可能在浮充条件下产生一定数量的残留硫酸盐,然后转变成性的硫酸盐形式。因此,当极板加速去活化时,可用的放电安时容量就会减小。随着负极板温度的升高,这种状况会更加恶化。由于氧循环反应的发生,负极板表面被氧化,相当数量的热释放出来。
3、正极板群的腐蚀和脱落
阀控式铅酸电池中,这种形式的性能变坏本来就更加严重。由于氧循环反应,负极活性物质被持续氧化生成硫酸铅,有效地维持了放电状态,因此降低了负极板的电位。而对于给定的浮充电压正极板群的电位则相应较高。因而氧化气氛加剧了,引起了更多的氧气的析出,使活性物质的腐蚀与脱落加剧。
4、电池的干涸
在使用期间气体再复合机制的有效率不是,水被电解生成氢气和氧气的速度虽然低于相同大小的富液式电池的电解速率的2%,但水还是会逐渐失去。
当失水是主要的失效原因时,电解质的比重将会增加,当比重由最初的1.30增至1.36时,表示失水度约达到25%。在失水度达到25%时,酸的高浓度加速了硫酸化,电解质比重又开始下降。电池电压直接正比于电解质比重,因此电池电压并不是电池健康状况的可靠显示。
5、负极上部铅的腐蚀
正极板栅和极群的腐蚀性在铅酸电池的各个设计中都是本来就有的。与之形成明显对比的是负极板位于高度还原气氛,在开口式电池中位于极群汇流排通常浸在电解液液面以下,这样就避免了由于正极板群上冒出的氧气而产生的侵蚀。但是阀控电池的许多设计没有保护极板板耳、极群和汇流排,特别是两者之间的焊接接头。因此,它们暴露在从氧循环中逃溢出来、在电池板群上部的连续的氧气气流中。依赖于板栅(板耳)和极群所选铅合金的一致性和生产质量(需要板栅部分完全溶化焊接和汇流排的低孔隙率),迅速氧化可能就会发生。